光电化学阴极保护技术研究进展
作者:蒋继宏,张小影,金祖权
青岛理工大学土木工程学院
光电化学阴极保护技术是基于半导体的光电转换效应,依靠太阳能来对金属进行腐蚀防护,是一种新型、绿色、无污染的金属阴极保护方法。光电阴极保护的本质是为被保护的金属提供一个更负的电位,它可以代替金属被氧化物质氧化,从而使金属得到保护。光电半导体受到太阳光的激发,会产生光生电子-空穴对,如果光生电子能够向金属转移并且转移速率大于电子的消耗速率,那么光生电子就会在被保护的金属中富集,使金属的电位极化到更负的区域而被保护,原理如图1所示。海洋环境具有太阳辐射强、温度高、湿度大等典型特点,特别是南海等远离陆地的海洋区域,存在着电力资源缺乏、维护成本高等问题,传统的阴极保护很难开展。如果通过光电化学阴极保护技术利用太阳能来对海洋金属提供腐蚀防护,对于提高海洋基础设施的服役寿命具有重要意义。
图1光电化学阴极保护技术原理图
Fig.1 Schematic diagram of photochemical cathodic pro-tection technology
后来,研究者提出了光阳极法,将被保护的金属作为阴极,光电半导体作为光阳极,通过导线将两者连接起来。光照下,光阳极产生光生电子空穴对,光生电子会通过导线转移到被保护的金属上,将其阴极极化从而提供阴极保护。这种方法中半导体光阳极与被保护金属是分开的,研究者只需关注光阳极的研究,这样就大大拓展了光电化学阴极保护的应用范围,如土壤或水中的金属防护。下文将对几种光阳极半导体材料的研究成果进行总结和探讨。
1 Ti O2阴极保护光阳极
表1 Ti O2离子掺杂改性光电阴极保护性能
Tab.1 Photocathode protection performances of ion-doped Ti O2
表2 Ti O2复合改性光电阴极保护性能
Tab.2 Photocathode protection performances of Ti O2 composites
除了上述与Ti O2复合的材料之外,制备导电高分子/Ti O2复合薄膜也同样可以提高其光电阴极保护性能。Liu等[52]制备了聚吡咯(PPy)/Ti O2核壳纳米棒(PTNRs)薄膜。与纯TNRs相比,PTNRs具有更高的可见光吸收能力和电子空穴对的分离效率,并且具有基于核壳结构的优异光电化学性能。此外,由于PPy在光源关闭后具有电荷存储能力,使得复合膜可以为被保护的金属提供连续的阴极保护。类似的,Ren等[53]合成了聚吡咯(PPy)敏化的Ti O2纳米管阵列。通过改变电聚合时间,可以控制复合材料的结晶度、形貌、光学性能以及光电阴极保护性能;研究发现,电聚合时间为15 min获得的复合膜表现出的可见光响应最好,并且在白光照射下对耦合的Q235碳钢具有最佳的光电阴极保护效果。
2 其他材料阴极保护光阳极
图2 Tio2和Sr Tio3的能带电位分布
Fig.2 Energy band potential distribution of Ti O2 and Sr Ti o3
3 兼具储能的光电阴极保护光阳极
4 结论与展望
参考文献
[1]BU YYAO J PAreview on photoelectrochemical cathodic protection semiconductor thin films for metals[J. Green Energy andEnvironment, 2017,2(4):331-362.
[2]RISTEEN BE,SCHINDELHOLZE,KELLY R G.Marine aerosol drop size effects on the corrosion behavior of low carbon steel andhigh purity iron[J].Journal of the Electrochemical Society,2013,161(14):580-586.
[3]HOUBR,LIXGMAX M,et al.The cost of corrosion in China[J].Npj Materials Degradation,2017,1(1):4.
[4]GONZALEZM B,SAIDMAN S B.Electrodeposition of polyprrole on 316L stainless steel for corrosion prevention[J]. CorrosionScience, 2011,53(1):276-282.
[5]MAJ L,WEN J B.Corrosion analysis of Al-Zn-In-MgTi-Mn sacrificial anode alloy[J.Journal of Alloys andCompounds,2010,496(1/2):110-115.
[6]CHRISTODOULOU C,GLASS G,WEBB J,et al.Assessing the long term benefits of impressed current cathodicprotection[J].Corrosion Science, 2010,52(8):2671-2679.
[7]ZHENG G W,WANG J S,LIU H,et al.Tungsten oxide nanostructures and nanocomposites for photoelectrochemical watersplitting[J]. Nanoscale, 2019,11(41):18968-18994.
[8]PARK H,KIM K Y,CHOl W.Photoelectrochemical approach for metal corrosion prevention using a semiconductorphotoanode[J].Journal of Physical Chemistry B,2002,106(18):4775-4781.
[9]FUJISAWA R,TSUJIKAWA S.Photo-Protection of 304stainless steel with T O2 coating[J].Passivation of Metals andSemiconductors, 1995, 185:1075-1081.
[10JIAYH.YELKANGXet al Photoelectrocatalytic reduction of perchlorate in aqueous solutions over Ag doped Ti 02 nanotubearrays[J].Journal of Photochemistry and Photobiology A:Chemistry,2016,328:225-232.
[11]OREGANB,GRATZELMFITZMAURICE D.Optical electrochemistry l.steady-state spectroscopy of conduction-band electrons ina metal oxide semiconductor electrode[J].Chemical Physics Letters, 1991, 183 (1/2):89-93.
[12]FUYMOAC.AReview on the electrochemically self-organized titania nanotube arrays.synthesis,modfications, and biomedicalapplications [J].Nanoscale Research Letters,2018,13(1):187.
[13JVILLAI,VEDDAA,FASOLl Met al.Size-Dependent luminescence in H202 nanocrystals.toward white emission from intrinsicsurface defects[J].Chemistry of Materials,2016,28(10):3245-3253.
[14]尹亮,孔继周,王谦之,等.TiO2基薄膜的光生阴极保护研究进展[J].材料保护,2018,51(4)102-109.YINLiang,KONG Jizhou WANGQianzhi,et al.Research progress of photogenerated cathodic protection of Ti 02 based thin films[J].Material Protection,2018,51(4):102-109.
[15)YUN HLIN CJ,Ll J,et alLow-temperature hydrothermal formation of a net-like structured Ti O2film and its performance ofphotogenerated cathode protection[J].Applied Surface Science,2008,255(5);:2113-2117.
[16]LEl C X,ZHOUH,WANG C,et al.Self-assembly of ordered mesoporous Ti O2 thin films as photoanodes for cathodic protection ofstainless steel[J].Electrochimica Acta,2013,87(1);245-249.
[17]ZUOJ,WU H,CHENAJ,et al Shape-dependent photogenerated cathodic protection by hierarchically nanostructured Ti O2films[J].Applied Surface Science,2018,426:142-148.
[18]ZHUYFDU R G,CHEN W,et al.Photocathodic protection properties of three-dimensional titanate nanowire networkfilmsprepared by a combined so-gel and hydrothermal method[J.Electrochemistry Communications, 2010,12(11):1626-1629.
[19]SUN M MCHENZYYU J Q.Highly efficient visible light induced photoelectrochemical anticorosion for304 SS by Ni-doped TiO2[J] .Electrochimica Acta,2013,109:13-19.
[20]JLIU YXU C,FENG ZD.Characteristics and anticorrosion performance of Fe-doped Ti 2 films by lquid phase depositionmethod[J].Applied Surface Science,2014,314(30):392-399.
[21]LISN,FU L J.Improvement in corrosion protection properties of Ti 02 coatings by chromium doping[J.CorrosionScience,2013,68:101-110.
[22]QIAOLYXIEFYXIE MH,et al.Characterization and photoelectrochemical performance of Zn-doped Ti O2fims by sol.gelmethod[J]. Transactions of Nonferrous Metals Society of China,2016,26(8);2109-2116.
[23]LIJ,LIN C J,LAl Y K,et al.Photogenerated cathodic protection of flower-like, nanostructured,N-doped Ti O2fim on stainlesssteel[J]. Surface and Coatings Technology,2010,205(2):557-564.
[24]LEICXFENGZD,ZHOU H.Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-depositedTi O2 films[J]. Electrochimica Acta,2012,68(3):134-140.
[25]ARMAN S Y,OMIDVAR H,TABAIAN S H,et al.Evaluation of nanostructured S-doped Ti O2 thin films and their photoelectrochemical application as photoanode for corrosion protection of 304 stainless stee][J].Surface and CoatingsTechnology,2014,251:162-169.
[26]ZHUL,CUIX L,SHEN J,et al Visible light photoelectrochemical response of carbon-doped T 02 thin films prepared by DCreactive magnetron sputtering[J].Acta Physico Chimica Sinica,2007,23(11):1662-1666.
[27]CUI J,PEI Y S.Enhanced photocathodic protection performance of Fe203/Ti O2 heterojunction for carbon steel under simulatedsolar light[J].Journal of Alloys and Compounds,2019,779:183-192.
[28]ZHANGX,CHEN G HLl W H.Preparation and photocathodic protection of Zn OrTi O2 heterojunction fim undetsimulated solar light[J].Materials,2019,12(23):3856.
[29]GUAN ZC,WANG H P,WANG X,et al.Fabrication of heterostructured beta-Bi203-T O2 nanotube array composite fim forphotoelectrochemical cathodic protection applications[J].Corrosion Science,2018,136:60-69.
[30JHAN C,SHAO Q, LEl J,et al.Preparation of Ni OTi O2p-n heterojunction composites and its photocathodic protection propertiesfor 304 stainless steel under simulated solar light[J].Journal of Alloys and Compounds,2017,703:530-537.
[31]SUN MM,CHEN ZY.Enhanced photoelectrochemical cathodic protection performance of the ln203/Ti O2 composite[Jlournalof the Electrochemical Society,2015,162(3):C96-C104.
[32]LEI J,SHAO Q,WANGXT,et alZn Fe204Ti O2nanocomposite films for photocathodic protection of304 stainless steel undervisible light[J].Materials Research Bulletin,2017,95:253-260.
[33]WANG X,GUANZC,JIN P,et al.Facile fabrication of Bi VO4 modified Ti O2 nanotube fim photoanode and is photocathodicprotection effect on stainless steel[J].Corrosion Science,2019,157:247-255.
[34]WANGXT,LEl J,SHAO Q,et alPreparation of Zn WO4/Ti O2 composite filim and its photocathodic protection for 304 stainlesssteel under visible light[J].Nanotechnology,2018,30(4):045710.
[35]HU J,GUANZ C,LIANG Y,et al.Bi2S3 modified single crystalline rutile Ti O2 nanorod array films for photoelectrochemicalcathodic protection[J].Corrosion Science,2017,125:59-67.
[36]WANG W C,WANGXT,WANG N.et al.Bi2Se3 sensitzed Ti O2 nanotube films for photogenerated cathodic protection of 304stainless steel under visible light[J].Nanoscale Research Letters,2018,13(1):295.
[37]WEI Q Y,WANGXT,NINGXB,et al. Characteristics and anticorrosion performance of WSe2/Ti 02 nanocomposite materials for304 stainless steel[J].Surface&Coatings Technology,2018,352:26-32.
[38]NINGXB,GE S S,WANG XT,et al.Preparation and photocathodic protection property of Ag2S-Ti O2 compositesL.J.Jloumnal ofAlloys and Compounds,2017,719:15-21.
[39]GE S S,ZHANG Q X,WANG XT,et al.Photocathodic protection of 304 stainless steel by Mn STi O2 nanotube films undetsimulated solar light[J].Surface and Coatings Technology,2015,283:172-176.
[40]WANG XT,WEI Q Y,Ll J R,et al.Preparation of Ni Se2/Ti O2 nanocomposite for photocathodic protection of stainlesssteel[J].Materials Letters,2016,185(15);:443-446.
[41]MAZ,MAXM,WANG XT,et al.Study on the photocathodic protection of Q235 steel by Cd In2S4 sensitzed T 2 composite insplash zone[J].Catalysts,2019,1067:2-13.
[42]LI H,LlYH,WANG XT,et al.3D Zn In2S4 nanosheets/Ti O2 nanotubes as photoanodes for photocathodic protection of Q235 CSwith high efficiency under visible light[J].Journal of Alloys and Compounds ,2018,771:892-899.
[43JDAVIDS,MAHADIKMA.AN G W.et al.Effect of directionalight dependence on enhanced photoelectrochemical performance ofZn In2S4/Ti O2 binary heterostructure photoelectrodes[J].Electrochimica Acta,2018,276:223-232.
[44]NINGXB,WANG XT,SHAO Q,et al.Zn Pc/Ti O2composites for photocathodic protection of 304 stainless stee(lJ.Journal ofElectroanalytical Chemistry,2020,858:113802.
[45]LINZQ,LAl YKHU R G,et al.A highly efficient Zn S/Cd S@Ti 02 photoelectrode for photogenerated cathodic protection ofmetals[J].Electrochimica Acta,2010,55(28):8717-8723.
[46]ZHANG J,HU J,ZHU Y F,et al.Fabrication of Cd Te/Zn S corelshell quantum dots sensitzed T O2 nanotube fims forphotocathodic protection of stainless steel[J].Corrosion Science,2015,99:118-124.
[47]Ll XR,WANGXT,Ning XB,et al.Sb2S3/Sb203modified Ti 02 photoanode for photocathodic protection of 304 stainless steelunder visible light[J].Applied Surface Science,2018,462:155-163.
[48]WANG XTNINGXB,SHAO Q,et al.Zn Fe A-layered double hydroxides/T O2 composites as photoanodes for photocathodicprotection of 304 stainless steel[J].Entific Reports,2018,8(1):4116-4127.
[49]ZHANG J,HU J,ZHU Y F;et al.Fabrication of Cd Te/Zn S corelshell quantum dots sensitized Ti O2 nanotube fims forphotocathodic protection of stainless steel[J].Corrosion Science,2015,99:118-124.
[5O]JLIH,WANG XT,WEI Q Y,et al.Enhanced photocathodic protection performance of Aglgraphene/Ti O2composite for 304 SS undervisible light[J].Nanotechnology,2017,28(22):225701.
[51]QIAN B,DAl H,TANG S F,et al.Enhanced photocathodic protection performance of graphene quantum dots sensitized Ti O2nanotube arrays for 304 stainless steel[J].Optik International Journal for Light and Electron Optics,2019,178:128-134.
[52]LIUYP,ZHAO C C,WANGX,et alPreparation of PPyrTi O2 core-shell nanorods film and its photocathodic protection for 304stainless steel under visible light[J].Materials Research Bulletin,2020,124:110751.
[53JRENJF,QIAN B,LI JZ,et al.Highly efficient polypyrrole sensitized Ti O2 nanotube films for photocathodic protection of Q235carbon steel[J].Corrosion Science,2016,111:596-601.
[54]LUO Q PYU XY,LEIBX,et al.Reduced graphene Oxide-Hierarchical Zn 0 hollow sphere composites with enhancedphotocurrent and photocatalytic activity[J].Journal of Physical Chemistry C,2012, 116(14):8111-8117.
[55]YUZB,XIEYP,LIU G,et al.Self-assembled Cd SIAuZn O heterostructure induced by surface polar charges for efficientphotocatalytic hydrogen evolution[J].Journal of Materials Chemistry A,2013,1(8):2773-2776.
[56]YU C L,YANG KXIEY.et al.Novel hollow Pt-Zn Onanocomposite microspheres with hierarchical structure and enhancedphotocatalytic activity and stability[J].Nanoscale,2013,5(5):2142-2151.
[57]SUN J X,YUAN Y P,QIUL G,et al.Fabrication of composite photocatalyst g-C3N4-Zn 0 and enhancement of phofocatalyticactivity under visible light[J].Dalton Transactions,2012,41(22):6756-6763.
[58]SUN MM.CHEN ZYBU YYet al Effect of Zn O on the corrosion of zinc,Q235 carbon steel and 304stainless steel under whitelight illumination[J].Corrosion Science,2014,82:77-84.
[59JTECHAPIESANCHAROENKJ R,SRIPIANEM W,TONGPULK,et al.lnvestigation of the photocathodic protection of a transparentZn O0 coating on an AlSl type304 stainless steel in a 3%Na Cl solution[J.Surface and Coatings Technology,2017,320.97-102.
[6O]JRAZAVZADEHO,BAHADORMANESH B,GHORBANIM.et al.Effect of photoelectrochemical activity of Zn 0-Graphene thin fimon the corrosion of carbon steel and304 stainless stee][J].Journal of Materials Engineering and Performance,2020,29(1):497-505
[61]WRIGHTON M S,WOLCZANSKIPTELLISAB.Photoelectrolysis of water by irradiation of platinized n-type semiconductingmetal oxides[J].Journal of Solid State Chemistry,1977,22(1):17-29.
[62]AHUJA S,KUTTYTRN.Nanoparticles of S T1 O3prepared by gel to crystllie conversion and their photocatalytic activity in themineralization of phenol[J]J.Journal of Photochemistry and Photobiology A:Chemistry,1996,97(1/2):99-107.
[63]MATSUMURAM,HIRAMOTO M,TSUBOMURAH.Photoelectrolysis of water under visible light with doped SrTi O3electrodes[J].Journal of the Electrochemical Society,1983,130(2):326-330.
[64]LIU YXIE L,Ll Y,et al.Synthesis and high photocatalytic hydrogen production of Sr T1 O3 nanoparticles from waterspliting underUV irradiation[J].Journal of Power Sources,2008,183(2):701-707.
[65]LIU J W.CHEN G,LIZH,et al.Electronic structure and visible light phofocatalysis water spliting property of chromium-doped Sr TO3[J].Journal of Solid State Chemistry, 2006,179(12):3704-3708.
[66]TONDAS,KUMAR S,ANANEYULU O,et al Synthesis of Cr and La-codoped Sr Ti 03 nanoparticles for enhanced photocatalyticperformance under sunlight irradiation[J].Physical Chemistry Chemical Physics:PCCP,2014,16(43);23819-23828.
[67]YU HYANSC,LIZS,et al.Efficient visible-ightdriven photocatalytic H2 production over CrIN-codoped Sr T O3][UJ IntermationalJournal of Hydrogen Energy,2012,37(17):12120-12127.
[68]WANG XC,MAEDAK,THOMASA,et al.A metalfree polymeric photocatalyst for hydrogen production from water under visiblelight[J].Nature Materials,2009,8(1):76-80.
[69]YAN S C,LIZS,ZOUZ G.Photodegradation performance of g-C3N4 fabricated by directly heatingmelamine[J].Langmuir,2009,25(17):10397-10401.
[7O]HUANGZJ,LIFB,CHEN BFet al.Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activityfor carbon dioxide activation and conversion[J.Applied Catalysis B:Environmental,2013,136/137:269-277.
[71]DING G D,WANG W T,JIANG T,et al.Highly selective synthesis of phenol from benzene over a vanadiumdoped graphitic canoonnitride catalyst[J].Chemcatchem,2013,5(1):192-200.
[72]BU YY,CHENZY,YU J Q,et al.A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion[J] ElectrochimicaActa,2013,88:294-300.
[73]BU YY,CHENZY.Highly efficient photoelectrochemical anticorrosion performance of composite with quasi-shell-core structureon 304 stainless steel[J].Rsc Advances,2014,4(85):45397-45406.
[74]BUYY.CHENZY.Efect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generatedby O-C3N4@Ti O2 with quasi-shell-core nanostructure[J].Electrochimica Acta,2014,144:42-49
[75]SUN M MCHENZYBU YYet al.Enhanced photoelectrochemical cathodic protection performance of the C3N4@In203nanocomposite with quasi-shell-core structure under visible light[J.Journal of Alloys and Compounds,2015,618:734-741.
[76]SUN WX,CUI S W,WEI N,.et alHierarchical WO3/T 02 nanotube nanocomposites for efficient photocathodic protection of 304stainless steel under visible light[J].Journal of Alloys and Compounds, 2018,749:741-749.
[77]LANGY,GUANZC,WANG H P,et al.Enhanced photoelectrochemical anticorrosion performance of WO3/Ti 02 nanotubecomposite films formed by anodization and electrodeposition[J].Electrochemistry Communications,2017,77:120-123.
[78]SUBASRI R,SHINOHARA T.Investigations on Sn 02-Ti O02 composite photoelectrodes for corrosion protection[J]. Electrochemistry Communications,2003,5(10):897-902.
[79]MENG Y.ZHANG JJ,WANGZZ,et al.Theoretical investigation on the photoelectfrochemical anticorrosion mechanism of Sn 02-T02 nanotube[J].Journal of Theoretical and Computational Chemistry, 2019,18(3):1950016.
[80]ZHANG J J,RAHMAN ZU,ZHENG Y B,et al.Nanofiower like Sn 02-Ti O2 nanotubes composite photoelectrode for eficientphotocathodic protection of 304stainless steel[J].Applied Surface Science, 2018,457:516-521.
[81]NASERIN.AMIRI M,MOSHFEGHAZ.MVisible photoenhanced current-voltage characteristics ofAu.TO2 nanocomposite thin fimsas photoanodes[J].Journal of Physics D:Applied Physics,2010,43(10);21-33.
[82]YANG Y,CHENG Y F.Bi-layered Ce 02ISr Ti 03 nanocomposite photoelectrode for energy storage and photocathodicprotection [J].Electrochimica Acta,2017,253:134-141.
[83]LI J,YUN H,LIN C J.A photoelectrochemical study of
除了上述与Ti O2复合的材料之外,制备导电高分子/Ti O2复合薄膜也同样可以提高其光电阴极保护性能。Liu等[52]制备了聚吡咯(PPy)/Ti O2核壳纳米棒(PTNRs)薄膜。与纯TNRs相比,PTNRs具有更高的可见光吸收能力和电子空穴对的分离效率,并且具有基于核壳结构的优异光电化学性能。此外,由于PPy在光源关闭后具有电荷存储能力,使得复合膜可以为被保护的金属提供连续的阴极保护。类似的,Ren等[53]合成了聚吡咯(PPy)敏化的Ti O2纳米管阵列。通过改变电聚合时间,可以控制复合材料的结晶度、形貌、光学性能以及光电阴极保护性能;研究发现,电聚合时间为15 min获得的复合膜表现出的可见光响应最好,并且在白光照射下对耦合的Q235碳钢具有最佳的光电阴极保护效果。
2 其他材料阴极保护光阳极
图2 Tio2和Sr Tio3的能带电位分布
Fig.2 Energy band potential distribution of Ti O2 and Sr Ti o3
3 兼具储能的光电阴极保护光阳极
4 结论与展望
除了上述与Ti O2复合的材料之外,制备导电高分子/Ti O2复合薄膜也同样可以提高其光电阴极保护性能。Liu等[52]制备了聚吡咯(PPy)/Ti O2核壳纳米棒(PTNRs)薄膜。与纯TNRs相比,PTNRs具有更高的可见光吸收能力和电子空穴对的分离效率,并且具有基于核壳结构的优异光电化学性能。此外,由于PPy在光源关闭后具有电荷存储能力,使得复合膜可以为被保护的金属提供连续的阴极保护。类似的,Ren等[53]合成了聚吡咯(PPy)敏化的Ti O2纳米管阵列。通过改变电聚合时间,可以控制复合材料的结晶度、形貌、光学性能以及光电阴极保护性能;研究发现,电聚合时间为15 min获得的复合膜表现出的可见光响应最好,并且在白光照射下对耦合的Q235碳钢具有最佳的光电阴极保护效果。
2 其他材料阴极保护光阳极
图2 Tio2和Sr Tio3的能带电位分布
Fig.2 Energy band potential distribution of Ti O2 and Sr Ti o3
3 兼具储能的光电阴极保护光阳极
4 结论与展望
参考文献
[1]BU YYAO J PAreview on photoelectrochemical cathodic protection semiconductor thin films for metals[J. Green Energy andEnvironment, 2017,2(4):331-362.
[2]RISTEEN BE,SCHINDELHOLZE,KELLY R G.Marine aerosol drop size effects on the corrosion behavior of low carbon steel andhigh purity iron[J].Journal of the Electrochemical Society,2013,161(14):580-586.
[3]HOUBR,LIXGMAX M,et al.The cost of corrosion in China[J].Npj Materials Degradation,2017,1(1):4.
[4]GONZALEZM B,SAIDMAN S B.Electrodeposition of polyprrole on 316L stainless steel for corrosion prevention[J]. CorrosionScience, 2011,53(1):276-282.
[5]MAJ L,WEN J B.Corrosion analysis of Al-Zn-In-MgTi-Mn sacrificial anode alloy[J.Journal of Alloys andCompounds,2010,496(1/2):110-115.
[6]CHRISTODOULOU C,GLASS G,WEBB J,et al.Assessing the long term benefits of impressed current cathodicprotection[J].Corrosion Science, 2010,52(8):2671-2679.
[7]ZHENG G W,WANG J S,LIU H,et al.Tungsten oxide nanostructures and nanocomposites for photoelectrochemical watersplitting[J]. Nanoscale, 2019,11(41):18968-18994.
[8]PARK H,KIM K Y,CHOl W.Photoelectrochemical approach for metal corrosion prevention using a semiconductorphotoanode[J].Journal of Physical Chemistry B,2002,106(18):4775-4781.
[9]FUJISAWA R,TSUJIKAWA S.Photo-Protection of 304stainless steel with T O2 coating[J].Passivation of Metals andSemiconductors, 1995, 185:1075-1081.
[10JIAYH.YELKANGXet al Photoelectrocatalytic reduction of perchlorate in aqueous solutions over Ag doped Ti 02 nanotubearrays[J].Journal of Photochemistry and Photobiology A:Chemistry,2016,328:225-232.
[11]OREGANB,GRATZELMFITZMAURICE D.Optical electrochemistry l.steady-state spectroscopy of conduction-band electrons ina metal oxide semiconductor electrode[J].Chemical Physics Letters, 1991, 183 (1/2):89-93.
[12]FUYMOAC.AReview on the electrochemically self-organized titania nanotube arrays.synthesis,modfications, and biomedicalapplications [J].Nanoscale Research Letters,2018,13(1):187.
[13JVILLAI,VEDDAA,FASOLl Met al.Size-Dependent luminescence in H202 nanocrystals.toward white emission from intrinsicsurface defects[J].Chemistry of Materials,2016,28(10):3245-3253.
[14]尹亮,孔继周,王谦之,等.TiO2基薄膜的光生阴极保护研究进展[J].材料保护,2018,51(4)102-109.YINLiang,KONG Jizhou WANGQianzhi,et al.Research progress of photogenerated cathodic protection of Ti 02 based thin films[J].Material Protection,2018,51(4):102-109.
[15)YUN HLIN CJ,Ll J,et alLow-temperature hydrothermal formation of a net-like structured Ti O2film and its performance ofphotogenerated cathode protection[J].Applied Surface Science,2008,255(5);:2113-2117.
[16]LEl C X,ZHOUH,WANG C,et al.Self-assembly of ordered mesoporous Ti O2 thin films as photoanodes for cathodic protection ofstainless steel[J].Electrochimica Acta,2013,87(1);245-249.
[17]ZUOJ,WU H,CHENAJ,et al Shape-dependent photogenerated cathodic protection by hierarchically nanostructured Ti O2films[J].Applied Surface Science,2018,426:142-148.
[18]ZHUYFDU R G,CHEN W,et al.Photocathodic protection properties of three-dimensional titanate nanowire networkfilmsprepared by a combined so-gel and hydrothermal method[J.Electrochemistry Communications, 2010,12(11):1626-1629.
[19]SUN M MCHENZYYU J Q.Highly efficient visible light induced photoelectrochemical anticorosion for304 SS by Ni-doped TiO2[J] .Electrochimica Acta,2013,109:13-19.
[20]JLIU YXU C,FENG ZD.Characteristics and anticorrosion performance of Fe-doped Ti 2 films by lquid phase depositionmethod[J].Applied Surface Science,2014,314(30):392-399.
[21]LISN,FU L J.Improvement in corrosion protection properties of Ti 02 coatings by chromium doping[J.CorrosionScience,2013,68:101-110.
[22]QIAOLYXIEFYXIE MH,et al.Characterization and photoelectrochemical performance of Zn-doped Ti O2fims by sol.gelmethod[J]. Transactions of Nonferrous Metals Society of China,2016,26(8);2109-2116.
[23]LIJ,LIN C J,LAl Y K,et al.Photogenerated cathodic protection of flower-like, nanostructured,N-doped Ti O2fim on stainlesssteel[J]. Surface and Coatings Technology,2010,205(2):557-564.
[24]LEICXFENGZD,ZHOU H.Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-depositedTi O2 films[J]. Electrochimica Acta,2012,68(3):134-140.
[25]ARMAN S Y,OMIDVAR H,TABAIAN S H,et al.Evaluation of nanostructured S-doped Ti O2 thin films and their photoelectrochemical application as photoanode for corrosion protection of 304 stainless stee][J].Surface and CoatingsTechnology,2014,251:162-169.
[26]ZHUL,CUIX L,SHEN J,et al Visible light photoelectrochemical response of carbon-doped T 02 thin films prepared by DCreactive magnetron sputtering[J].Acta Physico Chimica Sinica,2007,23(11):1662-1666.
[27]CUI J,PEI Y S.Enhanced photocathodic protection performance of Fe203/Ti O2 heterojunction for carbon steel under simulatedsolar light[J].Journal of Alloys and Compounds,2019,779:183-192.
[28]ZHANGX,CHEN G HLl W H.Preparation and photocathodic protection of Zn OrTi O2 heterojunction fim undetsimulated solar light[J].Materials,2019,12(23):3856.
[29]GUAN ZC,WANG H P,WANG X,et al.Fabrication of heterostructured beta-Bi203-T O2 nanotube array composite fim forphotoelectrochemical cathodic protection applications[J].Corrosion Science,2018,136:60-69.
[30JHAN C,SHAO Q, LEl J,et al.Preparation of Ni OTi O2p-n heterojunction composites and its photocathodic protection propertiesfor 304 stainless steel under simulated solar light[J].Journal of Alloys and Compounds,2017,703:530-537.
[31]SUN MM,CHEN ZY.Enhanced photoelectrochemical cathodic protection performance of the ln203/Ti O2 composite[Jlournalof the Electrochemical Society,2015,162(3):C96-C104.
[32]LEI J,SHAO Q,WANGXT,et alZn Fe204Ti O2nanocomposite films for photocathodic protection of304 stainless steel undervisible light[J].Materials Research Bulletin,2017,95:253-260.
[33]WANG X,GUANZC,JIN P,et al.Facile fabrication of Bi VO4 modified Ti O2 nanotube fim photoanode and is photocathodicprotection effect on stainless steel[J].Corrosion Science,2019,157:247-255.
[34]WANGXT,LEl J,SHAO Q,et alPreparation of Zn WO4/Ti O2 composite filim and its photocathodic protection for 304 stainlesssteel under visible light[J].Nanotechnology,2018,30(4):045710.
[35]HU J,GUANZ C,LIANG Y,et al.Bi2S3 modified single crystalline rutile Ti O2 nanorod array films for photoelectrochemicalcathodic protection[J].Corrosion Science,2017,125:59-67.
[36]WANG W C,WANGXT,WANG N.et al.Bi2Se3 sensitzed Ti O2 nanotube films for photogenerated cathodic protection of 304stainless steel under visible light[J].Nanoscale Research Letters,2018,13(1):295.
[37]WEI Q Y,WANGXT,NINGXB,et al. Characteristics and anticorrosion performance of WSe2/Ti 02 nanocomposite materials for304 stainless steel[J].Surface&Coatings Technology,2018,352:26-32.
[38]NINGXB,GE S S,WANG XT,et al.Preparation and photocathodic protection property of Ag2S-Ti O2 compositesL.J.Jloumnal ofAlloys and Compounds,2017,719:15-21.
[39]GE S S,ZHANG Q X,WANG XT,et al.Photocathodic protection of 304 stainless steel by Mn STi O2 nanotube films undetsimulated solar light[J].Surface and Coatings Technology,2015,283:172-176.
[40]WANG XT,WEI Q Y,Ll J R,et al.Preparation of Ni Se2/Ti O2 nanocomposite for photocathodic protection of stainlesssteel[J].Materials Letters,2016,185(15);:443-446.
[41]MAZ,MAXM,WANG XT,et al.Study on the photocathodic protection of Q235 steel by Cd In2S4 sensitzed T 2 composite insplash zone[J].Catalysts,2019,1067:2-13.
[42]LI H,LlYH,WANG XT,et al.3D Zn In2S4 nanosheets/Ti O2 nanotubes as photoanodes for photocathodic protection of Q235 CSwith high efficiency under visible light[J].Journal of Alloys and Compounds ,2018,771:892-899.
[43JDAVIDS,MAHADIKMA.AN G W.et al.Effect of directionalight dependence on enhanced photoelectrochemical performance ofZn In2S4/Ti O2 binary heterostructure photoelectrodes[J].Electrochimica Acta,2018,276:223-232.
[44]NINGXB,WANG XT,SHAO Q,et al.Zn Pc/Ti O2composites for photocathodic protection of 304 stainless stee(lJ.Journal ofElectroanalytical Chemistry,2020,858:113802.
[45]LINZQ,LAl YKHU R G,et al.A highly efficient Zn S/Cd S@Ti 02 photoelectrode for photogenerated cathodic protection ofmetals[J].Electrochimica Acta,2010,55(28):8717-8723.
[46]ZHANG J,HU J,ZHU Y F,et al.Fabrication of Cd Te/Zn S corelshell quantum dots sensitzed T O2 nanotube fims forphotocathodic protection of stainless steel[J].Corrosion Science,2015,99:118-124.
[47]Ll XR,WANGXT,Ning XB,et al.Sb2S3/Sb203modified Ti 02 photoanode for photocathodic protection of 304 stainless steelunder visible light[J].Applied Surface Science,2018,462:155-163.
[48]WANG XTNINGXB,SHAO Q,et al.Zn Fe A-layered double hydroxides/T O2 composites as photoanodes for photocathodicprotection of 304 stainless steel[J].Entific Reports,2018,8(1):4116-4127.
[49]ZHANG J,HU J,ZHU Y F;et al.Fabrication of Cd Te/Zn S corelshell quantum dots sensitized Ti O2 nanotube fims forphotocathodic protection of stainless steel[J].Corrosion Science,2015,99:118-124.
[5O]JLIH,WANG XT,WEI Q Y,et al.Enhanced photocathodic protection performance of Aglgraphene/Ti O2composite for 304 SS undervisible light[J].Nanotechnology,2017,28(22):225701.
[51]QIAN B,DAl H,TANG S F,et al.Enhanced photocathodic protection performance of graphene quantum dots sensitized Ti O2nanotube arrays for 304 stainless steel[J].Optik International Journal for Light and Electron Optics,2019,178:128-134.
[52]LIUYP,ZHAO C C,WANGX,et alPreparation of PPyrTi O2 core-shell nanorods film and its photocathodic protection for 304stainless steel under visible light[J].Materials Research Bulletin,2020,124:110751.
[53JRENJF,QIAN B,LI JZ,et al.Highly efficient polypyrrole sensitized Ti O2 nanotube films for photocathodic protection of Q235carbon steel[J].Corrosion Science,2016,111:596-601.
[54]LUO Q PYU XY,LEIBX,et al.Reduced graphene Oxide-Hierarchical Zn 0 hollow sphere composites with enhancedphotocurrent and photocatalytic activity[J].Journal of Physical Chemistry C,2012, 116(14):8111-8117.
[55]YUZB,XIEYP,LIU G,et al.Self-assembled Cd SIAuZn O heterostructure induced by surface polar charges for efficientphotocatalytic hydrogen evolution[J].Journal of Materials Chemistry A,2013,1(8):2773-2776.
[56]YU C L,YANG KXIEY.et al.Novel hollow Pt-Zn Onanocomposite microspheres with hierarchical structure and enhancedphotocatalytic activity and stability[J].Nanoscale,2013,5(5):2142-2151.
[57]SUN J X,YUAN Y P,QIUL G,et al.Fabrication of composite photocatalyst g-C3N4-Zn 0 and enhancement of phofocatalyticactivity under visible light[J].Dalton Transactions,2012,41(22):6756-6763.
[58]SUN MM.CHEN ZYBU YYet al Effect of Zn O on the corrosion of zinc,Q235 carbon steel and 304stainless steel under whitelight illumination[J].Corrosion Science,2014,82:77-84.
[59JTECHAPIESANCHAROENKJ R,SRIPIANEM W,TONGPULK,et al.lnvestigation of the photocathodic protection of a transparentZn O0 coating on an AlSl type304 stainless steel in a 3%Na Cl solution[J.Surface and Coatings Technology,2017,320.97-102.
[6O]JRAZAVZADEHO,BAHADORMANESH B,GHORBANIM.et al.Effect of photoelectrochemical activity of Zn 0-Graphene thin fimon the corrosion of carbon steel and304 stainless stee][J].Journal of Materials Engineering and Performance,2020,29(1):497-505
[61]WRIGHTON M S,WOLCZANSKIPTELLISAB.Photoelectrolysis of water by irradiation of platinized n-type semiconductingmetal oxides[J].Journal of Solid State Chemistry,1977,22(1):17-29.
[62]AHUJA S,KUTTYTRN.Nanoparticles of S T1 O3prepared by gel to crystllie conversion and their photocatalytic activity in themineralization of phenol[J]J.Journal of Photochemistry and Photobiology A:Chemistry,1996,97(1/2):99-107.
[63]MATSUMURAM,HIRAMOTO M,TSUBOMURAH.Photoelectrolysis of water under visible light with doped SrTi O3electrodes[J].Journal of the Electrochemical Society,1983,130(2):326-330.
[64]LIU YXIE L,Ll Y,et al.Synthesis and high photocatalytic hydrogen production of Sr T1 O3 nanoparticles from waterspliting underUV irradiation[J].Journal of Power Sources,2008,183(2):701-707.
[65]LIU J W.CHEN G,LIZH,et al.Electronic structure and visible light phofocatalysis water spliting property of chromium-doped Sr TO3[J].Journal of Solid State Chemistry, 2006,179(12):3704-3708.
[66]TONDAS,KUMAR S,ANANEYULU O,et al Synthesis of Cr and La-codoped Sr Ti 03 nanoparticles for enhanced photocatalyticperformance under sunlight irradiation[J].Physical Chemistry Chemical Physics:PCCP,2014,16(43);23819-23828.
[67]YU HYANSC,LIZS,et al.Efficient visible-ightdriven photocatalytic H2 production over CrIN-codoped Sr T O3][UJ IntermationalJournal of Hydrogen Energy,2012,37(17):12120-12127.
[68]WANG XC,MAEDAK,THOMASA,et al.A metalfree polymeric photocatalyst for hydrogen production from water under visiblelight[J].Nature Materials,2009,8(1):76-80.
[69]YAN S C,LIZS,ZOUZ G.Photodegradation performance of g-C3N4 fabricated by directly heatingmelamine[J].Langmuir,2009,25(17):10397-10401.
[7O]HUANGZJ,LIFB,CHEN BFet al.Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activityfor carbon dioxide activation and conversion[J.Applied Catalysis B:Environmental,2013,136/137:269-277.
[71]DING G D,WANG W T,JIANG T,et al.Highly selective synthesis of phenol from benzene over a vanadiumdoped graphitic canoonnitride catalyst[J].Chemcatchem,2013,5(1):192-200.
[72]BU YY,CHENZY,YU J Q,et al.A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion[J] ElectrochimicaActa,2013,88:294-300.
[73]BU YY,CHENZY.Highly efficient photoelectrochemical anticorrosion performance of composite with quasi-shell-core structureon 304 stainless steel[J].Rsc Advances,2014,4(85):45397-45406.
[74]BUYY.CHENZY.Efect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generatedby O-C3N4@Ti O2 with quasi-shell-core nanostructure[J].Electrochimica Acta,2014,144:42-49
[75]SUN M MCHENZYBU YYet al.Enhanced photoelectrochemical cathodic protection performance of the C3N4@In203nanocomposite with quasi-shell-core structure under visible light[J.Journal of Alloys and Compounds,2015,618:734-741.
[76]SUN WX,CUI S W,WEI N,.et alHierarchical WO3/T 02 nanotube nanocomposites for efficient photocathodic protection of 304stainless steel under visible light[J].Journal of Alloys and Compounds, 2018,749:741-749.
[77]LANGY,GUANZC,WANG H P,et al.Enhanced photoelectrochemical anticorrosion performance of WO3/Ti 02 nanotubecomposite films formed by anodization and electrodeposition[J].Electrochemistry Communications,2017,77:120-123.
[78]SUBASRI R,SHINOHARA T.Investigations on Sn 02-Ti O02 composite photoelectrodes for corrosion protection[J]. Electrochemistry Communications,2003,5(10):897-902.
[79]MENG Y.ZHANG JJ,WANGZZ,et al.Theoretical investigation on the photoelectfrochemical anticorrosion mechanism of Sn 02-T02 nanotube[J].Journal of Theoretical and Computational Chemistry, 2019,18(3):1950016.
[80]ZHANG J J,RAHMAN ZU,ZHENG Y B,et al.Nanofiower like Sn 02-Ti O2 nanotubes composite photoelectrode for eficientphotocathodic protection of 304stainless steel[J].Applied Surface Science, 2018,457:516-521.
[81]NASERIN.AMIRI M,MOSHFEGHAZ.MVisible photoenhanced current-voltage characteristics ofAu.TO2 nanocomposite thin fimsas photoanodes[J].Journal of Physics D:Applied Physics,2010,43(10);21-33.
[82]YANG Y,CHENG Y F.Bi-layered Ce 02ISr Ti 03 nanocomposite photoelectrode for energy storage and photocathodicprotection [J].Electrochimica Acta,2017,253:134-141.
[83]LI J,YUN H,LIN C J.A photoelectrochemical study of n-doped Ti O2 nanotube arrays as the photoanodes for catodic protectionof SS[J].Journal of the Electrochemical Society,2007,154(11):C631-C636.
[84]LIJ,LIN CJ,LIN C G.A Photoelectrochemical study of highly ordered Ti O2 nanotube arrays as the photoanodes for cathodicprotection of 304 stainless steel[J.Applied Mathematics and Computation, 2011, 158(3):C55-C62.